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1. Introduction

The fully compressible inviscid models for atmospheric flows contain two types of stiff waves: acoustic
waves and gravity waves. Both types of waves impose a time step constraint for explicit numerical models,
compared to the background advection of the fluid. In a previous study [2], we presented a splitting and used
an asymptotic analysis to show that it lead to the separation of the acoustic and buoyant time scales. To this
end, the paper introduced an operator Lz
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where g is the gravity constant, q0 the initial background density, c0 the initial sound speed, p0 the initial
hydrostatic background pressure and N is the Brunt–Väisälä frequency defined as
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A discussion on the sign of n showed that the operator Lz had the potential of having negative eigenvalues,
which had a stabilizing effect since the negative eigenvalues did not support gravity modes. We verified
numerically that the simulations were indeed stable for a CFL condition corresponding to the first real eigen-
value, and we showed that this analysis was compatible with the traditional analysis that exists for incom-
pressible or Boussinesq flows. Because this result can seem counter-intuitive, the present study uses
perturbational analysis to show that the operator Lz is intrinsically in the equations and, therefore, is not
related to the specifics of the dynamic splitting or the asymptotic analysis of [2]. We follow the methodology
traditionally used for incompressible or Boussinesq equations [1] but with the fully compressible Euler equa-
tions, and cast the final equation as a function of pressure [3]. The final equation for the total pressure shows
two parts: a part containing the acoustic motions and a part containing the gravity wave motions. The latter
part is identical to the equation found in [2] for the pressure pH that contained the gravity wave motions (the
splitting of [2] allowed to fully decouple this part of the motion from the acoustic motions), and the same
operator Lz appears. This shows that the operator Lz is not particular to our analysis [2].

2. Perturbational analysis of the Euler equations

Consider the Euler equations for a compressible inviscid fluid in two-dimensions
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where q is the density, u the velocity and p is the pressure.
We consider the reference state (q = q0(z),u = 0,p = p0(z)) in hydrostatic balance
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where ~q ¼ q� q0 is the perturbational density and ~p ¼ p � p0 is the perturbational pressure.
Now, we change the primary variables from (~q,u,w,~p) to (~h,u,w,~p), where ~h is the perturbational potential

temperature defined by
~h ¼ h� h0ðzÞ ð12Þ
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Using the definitions (12) and (13), we obtain the following relation between the perturbational variables
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Combining Eqs. (8) and (11), we obtain an equation for ~h and the full system of equation is
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Now, we want to get an equation only in ~p. We differentiate (18) with respect to t and use Eqs. (16) and (17)
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where we have defined Mz and Nz to be
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We differentiate (15) with respect to t and use Eq. (17)
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Combining Eqs. (19) and (22) yields
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where I is the identity operator, and finally
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where Lz and g0 were defined in Eqs. (1)–(3).
Eq. (24) is composed of two parts. The first bracket contains the acoustic motions and the second bracket

contains the gravity waves motions. We recover the operator Lz that was introduced in [2], proving that this
operator is intrinsic to the fully compressible equations and is not introduced by the particulars of the splitting
and asymptotic analysis of [2]. The part of the equation containing the gravity wave motions is identical to the
single equation in pH
� q0
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obtained from the system of hyperbolic equations derived in [2]
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where ud is the horizontal solenoidal velocity
divðg0udÞ ¼ 0 ð28Þ
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and pH is defined as the perturbational hydrostatic pressure that contains the effects of gravity wave motions
opH

oz
¼ �~qg ð29Þ
3. Conclusion

We have shown that the operator Lz is structurally in the Euler equations and does not depend on the spe-
cifics of the splitting and asymptotic analysis performed in [2]. Therefore, the full compressibility effects have a
stabilizing influence for certain stratifications of the atmosphere. The comparison of the structure of Eq. (24)
along with Eq. (25) shows that the splitting introduced in [2] fully decouples the acoustic motions from the
gravity wave motions.
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